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Breakdown of the arc  p l a s m a - c o l d  electrode gap in a segmented-channel  p lasma genera tor  has been 
exper imenta l ly  invest igated.  It is shown that 7 p rocesses  at the cathode do not play an impor tan t  part .  Express ions  a re  
obtained for  the dependence of breakdo~rn potential  on cur ren t ,  gas flow rate ,  and the dis tance f rom the anode spot. 
The exper imenta l  data are  in te rpre ted  and general ized in c r i t e r i a l  form. 

NOTATION 

r ,  z, e - - cy l i nd r i ca l  coordinates 
5--width of d ischarge  gap 
p--gas  p r e s s u r e  in d ischarge  gap 
7- -second ionizat ion coefficient 
ni, ne - - ion  and e lec t ron  densi t ies  
i - -d i scharge  cu r r en t  per  unit  length of channel 
U*-Vol tage  (breakdown potent{al) 
Ui--voltage drop ac ross  d ischarge  gap 
Ez, E r - - e l e c t r i c  field s t rength components 
H A--magnetic field s trength component qJ 
I, U--arc  cu r r en t  and voltage 
G--a i r  flow rate  through p lasma genera tor  
a - -d is tance  between eiectrodes  
Qz--heat  losses  on length z 
Teff--effective gas t empera tu re  in breakdown gap 
~ - a r c  column radius  
r l ,  R , r a d i i  of coaxial e lect rodes  
e - -e l ec t ron  charge 
vi, r e - - d r i f t  veloci t ies  of ions and e lec t rons  in d i rec t ion of z -axis  
Di, De--diffusion coefficients of ions and e lec t rons  
b i, be - -mobi l i t i e s  of ions and e lec t rons  

1. In a number  of p l a sma  devices an impor tant  role  is  played by breakdown of the gas between the p lasma and a 
cold electrode.  Thus, for example,  in p lasma genera tors  with a se l f -s tabi l ized  arc the gas between the positive column 
and the channel w a i l p e r i o d i c a l l y  breaks  down (shunting) [1-4] .  Shunting l imi t s  the length of the arc and the 
t empera tu re  of the heated gas and causes l a rge - s c a l e  f luctuations of the pa rame te r s  of the arc  and the flow. Breakdown 
of the arc p l a sma-e l ec t rode  gap also plays an impor tan t  par t  in p lasma engines,  high-voltage c i rcui t  b reakers ,  etc. 

In [5] the Townsend theory was used to descr ibe  breakdown in a p lasma genera tor  with a se l f -s tabi l ized  arc,  i . e . ,  
the arc  p lasma was t rea ted as an ord inary  metal  electrode surrounded by heated gas. In [6] the column of an open arc  
was also t reated as a heated metal  electrode,  and breakdown was descr ibed by means of a combination of the Townsend 
theory and s t r e a m e r  theory. 

In the case of breakdown of the gas between a p lasma and an electrode the p lasma behaves like a conductive gas 
containing free e lec t rons  and ions. When the p lasma serves  as cathode, the 7 p rocesses  that form the basis  of the 
Townsend-Rogowski theory are  no longer requi red  for the development  of an e lec t ron avalanche. If the p lasma serves  
as anode, it  will contain the large number  of free ions neces sa ry  for the rea l iza t ion  of ~ /processes  at the cathode, i . e . ,  
in this case also there is no necess i ty  for  ion mult ipl icat ion by means  of developing e lec t ron avalanches.  Thus, in 
re la t ion  to breakdown of the p lasma-co ld  electrode gap the basic  p r e m i s e s  of the Townsend-Rogowski theory become 
meaningless .  Moreover ,  photoionization of the gas in the breakdown gap takes place under the influence of the arc 
radiat ion,  charged par t ic les  diffuse into the gap f rom the arc  column, and photoprocesses controlled by the arc 
radia t ion develop at the surface of the metal  electrode.  These factors ,  d is regarded by the Townsend-Rogowski theory, 
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must  affect the breakdown mechanism.  Thus, in our p re sen t  state of knowledge, deeper unders tanding of the 
phenomenon of breakdown of the p l a sma-e lec t rode  gap and the fur ther  development  of the theory depend p r i m a r i l y  on 
the accumulat ion of exper imenta l  data. 

2. tn our exper imenta l  invest igat ion of breakdown we used a p l a sma  genera tor  with a segmented channel (Fig. 1). 
The water-cooled copper e lect rodes  1, 3 and segments  2, insulated f rom each other and the e lectrodes ,  form the arc 
chamber  of the p lasma genera tor .  The dis tance between electrodes  a = const  (21 cm). Air  is supplied through 
tangential  holes in the swi r l e r  r ing.  Between the arc p lasma and the inner  wall of the segment  there is a l ayer  of 
re la t ive ly  low- tempera tu re  a i r  with very  low e lec t r ica l  conductivity. In the presence  of a potential  difference between 
the p lasma and the segment  a weak-cur ren t  s emi - se l f -ma in t a ined  discharge develops in this layer  [7]. At a cer ta in  
cr i t ica l  value of the potential  difference breakdown takes place and the s emi - se l f -ma in t a ined  discharge becomes an arc  
discharge.  In the exper iments  the voltage on the segments ,  whose inside d iameter  and thickness were equal to 1 cm, 
was supplied by the s ing le -pu lse  genera tor  whose c i rcui t  d iagram is shown in Fig. 1. A typical osc i l logram of the 
voltage pulse at i = 0 is given in Fig. 2. The regulated r i s e  t ime of this pulse was of the order  of 10 -~ see. The 
maximum value of the pulse was so selected that breakdown took place on the sloping par t  of the pulse. In order  to 
l imi t  and measu re  the value of the cu r ren t  after breakdown a r e s i s t ance  R' (shunt Sh2) was introduced into the c i rcui t  
between the genera tor  and the segment .  A Dt~SO-1 double-beam osci l lograph was used to record  osc i l lograms of the 
breakdown voltage and cur ren t .  

. w  _ _  _ _  - _ _  �9 Z 

Fig. 1. Diagram of the exper imenta l  setup: 
1) anode, 2) segments ,  3) cathode; G--a i r  
supply, r,  z - - cy l indr i ca l  coordinates.  

The a rc  voltage and cu r r en t  were recorded by an M-366 vol tmeter  (class I accuracy) and an LM-I  i n s t rumen t  
(class 0.5 accuracy),  respect ive ly .  

l i l l l l l l l l l l l l l  i l l l ~ l l  l i l i l  l 

I, ,Is'Io~i<~ 
Fig. 2. Ose i l logram of voltage pulse. 

In the exper iments  t and U were var ied  in the ranges  80-160 A and 570-900 V, respect ively .  

S. Osc i l lograms of i, U' = U i + RI and Ui are  presented  in Fig. 3a, b for r e ve r s e  polar i ty  (plasma as anode, 
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s e g m e n t  as  ca thode) .  As  can be  s e e n  f r o m  the o s c i l l o g r a m  (Fig.  3a), the d i s c h a r g e  c u r r e n t  up to b r e a k d o w n  is  v e r y  
T s m a l l ,  and U '  v a r i e s  wi th  the o p e n - c i r c u i t  g e n e r a t o r  vo l t age .  When U '  ~ Uma  x b r e a k d o w n  o c c u r s  and i beg ins  to 

i n c r e a s e  r ap id ly ,  whi le  U '  d e c r e a s e s .  

F ig .  3. O s c i l l o g r a m s  of the d i s c h a r g e  c u r r e n t  
and vo l tage :  U = 910 V, I = 100 A, G = 8 g / s e c ,  
z = 10 cm,  r e v e r s e  po l a r i t y :  a) R '  = 3 ohm,  b) 
R'  = 0. 

I t  i s  c l e a r  f r o m  Fig.  3b that  a f t e r  b r e a k d o w n  U i d e c r e a s e s  v e r y  s h a r p l y .  The  s m o o t h e r  d e c r e a s e  in U'  in Fig.  
3a i m m e d i a t e l y  a f t e r  b r e a k d o w n  i s  a t t r i bu t ab l e  to the r ap id  i n c r e a s e  in i and hence  JR ' .  Howeve r ,  b e f o r e  b reakdown 
the v a l u e s  of i and JR'  a r e  s m a l l ,  and t h e r e f o r e  i t  m a y  be a s s u m e d  that  U* ~ Uma x '  . In the c a s e  of n o r m a l  p o l a r i t y  
( p l a s m a  as  ca thode ,  s e g m e n t  as  anode)  the c u r r e n t  i n c r e a s e s  m o r e  s m o o t h l y  du r ing  b reakdown  and d i s c h a r g e  
d e v e l o p m e n t  (Fig.  4). H o w e v e r ,  the d i s c h a r g e  c u r r e n t  b e f o r e  b r e a k d o w n  is  a l so  s m a l l  and iR '  i s  m u c h  l e s s  than U i.  
T h e r e f o r e ,  h e r e  again ,  i t  i s  p o s s i b l e  to a s s u m e  tha t  U* ~- ' Umax.  

l l i l  I ] l ~ } l l l } l l l  

Fig'. 4, Oscillograms of discharge current 
and vo l t age :  U = 900 V, I = 100 A, G = 8 
g / s e c ,  z =  1 0 c m ,  R ' = 3  ohm, n o r m a l  

p o l a r i t y .  

The  g r a p h s  in F ig .  5 show U* as a func t ion  of z fo r  v a r i o u s  v a l u e s  of G at  I = 120 A. C l e a r l y ,  as  z i n c r e a s e s ,  U* 
d e c r e a s e s  a c c o r d i n g  to a n o n l i n e a r  law.  At high f low r a t e s  (G = 12 g / s e c )  as  z i n c r e a s e s  the r a t e  of d e c r e a s e  of  
b r e a k d o w n  vo l t age  ldU*/dz l  at  f i r s t  i n c r e a s e s ,  and then d e c r e a s e s ,  whi le  at  s m a l l  f low r a t e s  (G = 4 g / s e c )  IdU*/dz[ 
d e c r e a s e s  m o n o t o n i c a l l y  wi th  i n c r e a s e  in z. I t  is  a l so  c l e a r  tha t  as  z i n c r e a s e s  the c u r v e s  fo r  d i f f e r e n t  f low r a t e s  
a p p r o a c h  each  o the r .  A c o m p a r i s o n  shows that  the dependence  of U* on z is  qua l i t a t i ve ly  the s a m e  f o r  n o r m a l  and 
r e v e r s e  p o l a r i t y .  H o w e v e r ,  on the i n v e s t i g a t e d  r a n g e  of p a r a m e t e r s  the va lue  of U* f o r  r e v e r s e  p o l a r i t y  e x c e e d s  that  

f o r  n o r m a l  p o l a r i t y  by 10-50%.  

The dependence  of U* on G is  shown in Fig .  6 fo r  I = 160 A. At s m a l l  z as  G i n c r e a s e s  U* g rows  rap id ly .  An 
e x a m i n a t i o n  of the e x p e r i m e n t a l  da ta  f o r  v a r i o u s  I showed tha t  the e f f e c t  of I on the change in the abso lu te  va lue  of  U* 
a t  s m a l l  z i s  c o n s i d e r a b l e ;  h o w e v e r ,  i t  d i m i n i s h e s  as z i n c r e a s e s .  Thus ,  f o r  example ,  f o r  G = 10 g / s e c  an i n c r e a s e  in 
c u r r e n t  f r o m  80 to 160 A a t  z = 12.5 c m  l e a d s  to a d e c r e a s e  in U* f r o m  800 to 530 V, and a t  z = 5 c m  f r o m  3750 to 

2270 V. 

T h e s e  c h a r a c t e r i s t i c  f e a t u r e s  of the e f f ec t  of G, I, and z on U* can be  exp la ined  in t e r m s  of the dependence  of 
U* on Tef f  and 5. By ana logy  with  the g e n e r a l i z e d  P a s c h e n  law U* = f ( p 6 / T )  fo r  b r e a k d o w n  of the gap be tween  m e t a l  
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e lec t rodes ,  U* may be expected to dec rea se  with dec rea se  in the quantity ph/Teff.  As the gas moves  along the channel, 
i . e . ,  with i nc r ea se  in z, i t  is heated, and ~ i nc r ea se s ;  consequently,  5 dec r ea se s .  
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Fig. 5. Variat ion of the breakdown potential  
of the a r c - w a l l  gap along the channel: for  G = 
= 4  (curves 1,4), G = 8 (curves  2, 5), G =  12 
g / s e c  (curves 3,6) at I = 120 A; 1, 2, 3) r e v e r s e  
polar i ty;  4, 5, 6) norton1 polar i ty .  

Simultaneously Teff i nc r ea se s ,  s ince par t  of the energy r e l ea sed  in the posi t ive column is t r a n s f e r r e d  to the 
surrounding cold gas. With fur ther  i n c r e a s e  in z the t empe ra tu r e  dis t r ibut ion over  the channel c ross  sect ion tends 
asymptot ica l ly  to a l imit ,  i . e . ,  at l a rge  z Tel  f and 5 for  given I and G tend to definite l imi t s .  This p roce s s  is the m o r e  
rapid,  the s m a l l e r  G and the l a r g e r  I. This explains the d e c r e a s e  in U* with inc rease  in z (Fig. 5) and dec rea se  in G 
(Fig. 6). At smal l  G the gas is heated more  rapidly,  and U* is close to the l imi t ing value even at smal l  values  of z 
(Fig. 5, G = 4 g / sec ) ,  while at l a rge  G the gas is heated more  slowly, and correspondingly  U* approaches  the l imit ing 
value at l a rge  lengths (Fig. 5, G = 12 g / sec ) .  At z = const  and I = const  as G inc rea se s  the arc  d i ame te r  and Tef  f 
dec rease ;  consequently,  U* i n c r e a s e s  (Fig. 6). The exper iment  showed that a dec rea se  in I leads to a s i m i l a r  effect.  
It  is c l ea r  f rom Fig.  6 that for  smal l  z ( cu rves  3 and 6) at l a rge  G the inc rease  in U* with i nc r ea se  in G slows down. 
Apparently,  this is because  in such cases  the effect  of the a rc  on the state of the gas in the breakdown gap is smal l ,  
i . e . ,  Teff is a lmos t  equal to the t empe ra tu r e  of the cold gas, and in the init ial  sect ions at l a rge  G the radius [ depends 
only weakly on the la t te r .  
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Fig. 6. Breakdown potential  of the a r c -  
wall gap as a function of gas flow ra te  
for  z = 12.5 (curves 1,4), z = 7.5 (curves  
2, 5), and z = 2.5 cm (curves 3, 6) at I = 
= 160 A: 1, 2, 3) r e v e r s e  polar i ty;  4, 5, 6) 
normal  po la r i ty .  

It follows that U* is chiefly de te rmined  by the energy balance of the a rc  and the gas flow. Assuming the 
constancy of the gas enthalpy at the inlet  to the a rc  chamber ,  the m e a n - m a s s  gas enthalpy in sec t ion  z can be 
cha rac t e r i zed  by the quantit ies 
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[ I lUz k = ~ - .  Ez'lZ~ aG q---I Qz(I Ez~z) -1 
o n 

In f i r s t  approximat ion i t  may be assumed that Tef f (or the enthalpy h e f  t cor responding  to that t empera ture )  and 6 
a re  de te rmined  by these quanti t ies .  In [5] the quantity k was taken as hef f. In rea l i ty ,  owing to the sharp  nonuniformity 
of the t empe ra tu r e  dis t r ibut ion over  the channel c ro s s  sect ion the m e a n - m a s s  enthalpy is much g rea t e r  than hef f. 
Accordingly,  i t  should again be emphas ized  that Tef f and h e f  t a re  functions only of k and ~?z. Considering that in the 
f i r s t  approximat ion 71 z is a lso a function of k, we can cons t ruc t  the s impli f ied re la t ion  

u*  = / (~), ~ =  I U z /  aG.  (3.1) 

In Fig. 7 the exper imenta l  data have been co r r e l a t ed  on the bas is  of (3.1). The more  accura te  c r i t e r i a I  equation 
for  U* [8] has the form: 

U* = I  a cl ' pd,  a ' ~ . (3.2) 

In the case  in quest ion p = const,  d = const, and a = const. There fo re  (3.2) may be wri t ten  as 

t' IUz 
u ,  c, (3.3) 

A compar i son  of (3.1) and (3.3) shows that (3.1) must  be s t ra t i f ied  with r e s p e c t  to G and z. The s t ra t i f ica t ion  
with r e spec t  to z is d i rec t ly  apparent  f rom Fig. 7. The s t ra t i f ica t ion  with r e s p e c t  to G at z = const is shown in Fig. 8. 
As can be seen  f rom Fig.  7, the exper imenta l  data p resen ted  can be desc r ibed  by Eq. (3.1) c o r r e c t  to +50%o 
The re fo re  genera l i za t ion  of the exper imenta l  data in the fo rm (2.1) may be considered useful for  es t imat ing  the value 
of U*. 
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Fig.  7. Breakdown potential  as a function 
of the p a r a m e t e r  IUz /aG W, g-1.  sec .  
Points  1, 2, 3, 4, 5, and 6 cor respond  to 
the values  z = 15, 12.5, 10, 7.5, 5, and 
2.5 cm, r e spec t ive ly .  

Let  us compare  the r e su l t s  obtained with the data for  the breakdown of a i r  between metal  coaxial  e lec t rodes .  In 

the l a t t e r  case  the breakdown vol tage is de te rmined  [9] f rom the s e m i e m p i r i c a l  fo rmula  

( A , , , , 0  , ,  , (3.4) 
In t + ~ -  - -  B To R exp~ U* T ln--~-i ) - - e x p ' - -  U* T I n  , 

la 7 -  

where T O = 300 ~ K. 

The r e su l t s  of a calculat ion based on (3.4) a re  p resen ted  in Fig. 9, where 1R - r l  = 5. In the calculat ions it  was 

assumed that 

i b 
A = 15cmmmHg /3 = 3 ~ . �9 6JcmmmHg . 7 = i0 -~ [10] , 
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As seen  f rom (3.4) and the graphs,  at 1~ = const, U ' i n  does not depend on T and p but is de te rmined  only by ~/. 
The max imum measu red  values  of ~' do not exceed 0.12 [10]; accordingly,  the value " /= 0.29 should be r ega rded  as too 
high. The value ~/ = 0.29 was fo rmal ly  found f r o m  the condition of equali ty of the value of U* calculated f rom (3.4) and 
the l eas t  exper imenta l  value of U* for  r e v e r s e  polar i ty  (plasma as anode) on the invest igated range of var ia t ion  of the 
p a r a m e t e r s .  

650 ~ .  | / 

% oZ 

e(, 
~50 ~ e5 

zso ~ -T 
". t ,  12 lo'~ t, w.g-'.sec 

Fig. 8. Breakdown potential  as a function 
of the p a r a m e t e r  IUz /aG W. g-1. sec  for 
z = 1 2 . 5 c m .  Curves  1, 2, 3, 4, and 5 
cor respond  to 'G = 4, 6, 8, 10, and 12 
g / s e c .  

It  should also be emphas ized  that in the range 5 = (4-70)10 -~ cm the voltage U* depends ra ther  weakly on ~, and 
d e c r e a s e s  with d e c r e a s e  in 5 and i n c r e a s e  in T. These  re la t ions  and the data of Fig. 7 have ce r ta in  p rope r t i e s  in 
common. As noted above, as I U z / a G  i n c r e a s e s ,  so does the value of Tef  f, while 6 dec reases .  Thus,  in both cases  U* 
d e c r e a s e s  with i nc r ea se  in t e m p e r a t u r e  and d e c r e a s e  in the s ize  of the d i scharge  gap. 

~g 

/.0 ~ ' ~  ~- - "  I 

Fig. 9. Theore t i ca l  U* = f ( R  - r~) curves  
for  coaxial  e l ec t rodes  at R = 0.5 cm; p = 1 
a t m a b s  for  curves  1, 3, 4 a n d p  = 2 arm 
abs for  curves  2 and 5; ~/ = 10 -2 for  curves  
1, 2, 3 and ~, = 0.29 for  curves  4 and 5; T = 
= 300 ~  for  curves  1, 2, 4, 5 a n d  T = 
= 1000 ~ K for  curve  3. 

Clear ly ,  other  things being equal, the e l ec t r i c  s t rength  of the a r c - e l e c t r o d e  gap is chiefly de te rmined  by the 
l aye r  of cold gas adjacent  to the wall. Since in these exper iments  the segments  were in tens ively  cooled, the 
t e m p e r a t u r e s  of thei r  inner  walls  and the adjacent  l ayers  of gas did not exceed 1000~ 

The var ia t ion  of gas p r e s s u r e  along the channel was also sl ight  and remained  within the l imi t s  1 -2  atm abs. The 
values  of U* f r o m  Fig. 7 for  given values  of the t empera tu re  and p r e s s u r e  cor respond  to a var ia t ion  of 5 in the range 
3 . 1 0 - 3 - 1 . 5  �9 10 -1 cm (see Fig. 9), l a rge  values  of 5 r e l a t ing  to smal l  z and I and la rge  G. Thus, s t a r t ing  f rom a 
compar i son  of the data of Figs .  7 and 9, we may conclude that if Paschen law U* = f (pS/T)  is applicable to the given 
case,  despi te  the inappl icabi l i ty  of the Townsend-Rogowski  theory,  then at l a rge  z and I and smal l  G the development  of 
the breakdown p roces s  begins in a thin l aye r  adjacent  to the e lec t rode  (5 ~. 10-1-10 -~ era). However,  i t  is to be 
expected that as the cu r r en t  i n c r e a s e s  during development  of the d i scharge  charged pa r t i c l e s  f rom eve r  deeper  l ayers  
of gas will begin to play an ~mportant pa r t  in cu r r en t  t ranspor t .  

The r e su l t s  obtained and the known p rope r t i e s  of the s e m i - s e l f - m a i n t a i n e d  d i scharge  in the a r c - w a l l  gap [11] 
make it  poss ib le  to propose  the following p ic ture  of gas breakdown between a cyl indr ica l  column (i. e., 3 /3z  = 0) and 
the channel wall.  The d i scharge  gap can be a r b i t r a r i l y  divided into two regions .  The f i r s t  region bo rde r s  the column 
(~ < r < r l)  and contains a r e l a t i ve ly  l a rge  number  of e l ec t rons  and ions. Charged pa r t i c l e s  pene t ra te  into this region 
f rom the arc  by diffusion, as well as being c rea ted  in it  d i rec t ly  by photoionization, etc. The axial component of the 
cu r ren t  densi ty in the f i r s t  region is negligibly smal l  as compared  with the cu r r en t  density in the arc  column. The 
cu r r en t  pe r  unit length of the channel in the radia l  d i rec t ion  is given by the equations 
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i=2~re {(Er__"e~)bene +(Er ~Jt*~b.n _~ d'Ze dni" I c / * ,  D e - ' ~ - - - D i ~  (3.5) 
1 d 
r ~t," (, 'Y~,) = ~ (n~ - -  ,,~) ( 3 . 6 )  

At the boundary of the column r = ~ the value of E r is smal l ,  charge t r anspor t  depends chiefly on diffusion, and 
the potential  drop U I onthe interval~ < r < r I is small .  As r inc reases ,  E r also inc reases ,  and at the boundary of the 
f i r s t  region at r = r l  the chief ro le  is played by the motion of charges in the e lec t r ic  field. The second region lies 
between the f i r s t  region and the channel wall @1 < r < R). Here, the gas is re la t ive ly  cold, v e - 0, v i -~ 0, cu r ren t  
t r anspo r t  depends on E r,  and the cu r r en t  is given by the equation 

i = 2~reEr (b~nf + bene) (3 .7)  

and Eq. (3.6). If the p l a sma  se rves  as cathode and n i << n e, Eqs. (3.6) and (3.7) have a solution [9, 12] which at smal l  i 
and r J R  ~ I can be considerably  s implif ied [9] and wr i t ten  in the form: 

i =_ (Ul_UR_rlEl ln_~ )r~Elbe (3.8) 

where U1 = U(rl),  E1 = Er(r l ) .  

F rom (3.8) we may conclude that, in spite of the fact that the arc is an a lmost  unl imited emi t te r  of e lec t rons ,  and 
~' p roces se s  are  not requi red  for e lec t ron mult ipl icat ion,  at  smal l  potential difference (U1 - U k) the cur ren t  r e m a i n s  
bounded. But, as  U1 - UR inc reases ,  an impor tant  new factor appears:  at large E r and i the tempera ture  of the 
e lec t ron gas becomes higher than the t empera tu re  of the heavy par t ic les  and intense nonequi l ibr ium ionization begins 
[13]. This ionizat ion is charac te r ized  by a specific in s t ab i l i t y - - s t a r t ing  f rom a cer ta in  value of E r the c u r r e n t  densi ty  
rapidly inc reases .  It may be assumed that in the given case this ins tabi l i ty  ends in arc  breakdown. 

The p r i m a r y  e lec t rons  produced in the discharge gap by photoionization and the photoemission of the wall may 
also lead to the development  of the above-ment ioned instabi l i ty .  Apparently,  their  role is  impor tant  when the p lasma 
serves  as anode, i . e . ,  when the radia l  e lec t r i c  field r e s i s t s  the diffusion of e lec t rons  into the discharge gap. 

It is cIear  f rom (3.5) that for posi t ive polar i ty  the signs of E r and dne /d r  are the same,  while for negative 
polar i ty  they are different.  This explains the difference in  the values of U* for posit ive and negative polar i ty.  

Thus, breakdown of the arc  p l a s m a - c o l d  electrode gap has been exper imenta l ly  investigated.  The dependence of 
the breakdown potential  on I, G, and z has been determined,  and it  has been shown that in the f i r s t  approximation U* 
can be represen ted  in the form of a function of the d imens iona l  complex IUz/aG. 
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